Skill- Plotly dash, html, dcc
I will be building a Plotly Dash application for users to perform interactive visual analytics on SpaceX launch data in real-time.
!pip3 install pandas dash
!pip3 install jupyter_plotly_dash
!pip3 install wget
import pandas as pd
import wget
spacex_file = wget.download('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/spacex_launch_dash.csv')
from jupyter_plotly_dash import JupyterDash
import dash
#import dash_core_components as dcc
from dash import dcc
from dash import html
#import dash_html_components as html
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv(spacex_file)
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
app = dash.Dash(__name__)
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
dcc.Dropdown(id='site-dropdown',
options=[{'label': 'All Sites', 'value': 'All Sites'},
{'label': 'CCAFS LC-40', 'value': 'CCAFS LC-40'},
{'label': 'CCAFS SLC-40', 'value': 'CCAFS SLC-40'},
{'label': 'KSC LC-39A', 'value': 'KSC LC-39A'},
{'label': 'VAFB SLC-4E', 'value': 'VAFB SLC-4E'},
],
searchable=True,
placeholder='Select a Launch Site here',
style={'width': '80%', 'padding': '3px','font-size': '20px', 'text-align-last': 'center'}),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
#dcc.RangeSlider(id='payload-slider',...)
dcc.RangeSlider(id='payload-slider',
min=0,
max= 10000,
step=1000,
value= [min_payload, max_payload]),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),])
@app.callback(Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value'))
def get_graph(site_dropdown):
if site_dropdown == 'ALL':
piechart = px.pie(spacex_df,values='class', names='Launch Site', title=f"Success Launches for site {site_dropdown}" )
return piechart
else:
filtered_df= spacex_df[spacex_df['Launch Site'] == site_dropdown]
filtered_df= filtered_df.groupby(['Launch Site', 'class']).size().reset_index(name='class count')
piechart = px.pie(filtered_df, values='class count', names='class', title=f"Success Launches for site {site_dropdown}" )
return piechart
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(Output(component_id='success-payload-scatter-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value'),
Input(component_id="payload-slider", component_property='value'))
def get_scatter(site_dropdown,slider_range,):
low, high = slider_range
mask = (spacex_df['Payload Mass (kg)'] > low) & (spacex_df['Payload Mass (kg)'] < high)
filtered_df = spacex_df[mask]
if site_dropdown == 'ALL':
#Display all values for the variable
filtered_df= spacex_df[spacex_df['Launch Site'] == site_dropdown]
filtered_ddf = pd.DataFrame(filtered_df(['Launch Site']))
fig = px.scatter(filtered_ddf,x="Payload Mass (kg)", y="class", color="Booster Version Category", title='Payload vs. Outcome for All Sites')
return fig
else:
filtered_df1= filtered_df[filtered_df['Launch Site'] == site_dropdown]
fig = px.scatter(filtered_df1, x="Payload Mass (kg)", y="class", color="Booster Version Category", title=f"Payload and Booster Versions for site {site_dropdown}")
return fig
if __name__ == '__main__':
app.run_server()